How to count dataframe values () | pandas.DataFrame.count() function

Spread the love

pandas.DataFrame.count(): This function returns for each column/row the number of non-NA/null entries. If level is specified returns a DataFrame.

Syntax: DataFrame.count(axis=0, level=None, numeric_only=False):

Count non-NA cells for each column or row.

The values None, NaN, NaT, and optionally numpy.inf (depending on pandas.options.mode.use_inf_as_na) are considered NA.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0
If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row.

level : int or str, optional
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame. A str specifies the level name.

numeric_only : boolean, default False
Include only float, int or boolean data.

Returns:
Series or DataFrame
For each column/row the number of non-NA/null entries. If level is specified returns a DataFrame.

pandas.DataFrame.count() function example program

import numpy as np import pandas as pd df = pd.DataFrame({'A': [5, 2], 'B': [4, 8], 'C':[9,10]}) print(df.count())

Output:

 

Author: admin

Leave a Reply

Your email address will not be published. Required fields are marked *